Home>>News>>Industry News>>Main steps in sheet metal processing

Main steps in sheet metal processing

2024-08-15

In modern manufacturing, sheet metal working is a key process for producing high quality metal products. This technology transforms flat sheet metal into complex three-dimensional structures through precise physical deformation and joining processes. The following are the main steps in sheet metal working, each of which plays a decisive role in the quality, strength and appearance of the final product.

Expanding/Programming: The first step in any sheet metal fabrication project begins with design. Designers use specialized 3D CAD software to create the product design, which is then “unfolded” into a 2D form for machining on a flat sheet of metal. Nesting is also done at this stage to maximize material utilization and minimize waste.

Punching/Cutting: Punching or cutting is the process of dividing sheet metal into predetermined shapes. This usually involves the use of equipment such as laser cutters and turret punch presses, which quickly and accurately cut the sheet metal in preparation for subsequent bending and forming processes.

Deburring: Sharp burrs are often left on sheet metal after cutting and blanking operations. Through the deburring process, these burrs can be removed using hand tools or specialized deburring machines to ensure smooth edges of metal parts in preparation for subsequent processes.

Bending: Bending is a core step in sheet metal processing. It uses equipment called a plate bender or bending machine to bend sheet metal at an angle according to the design requirements, thus forming a three-dimensional structure.

Welding: In sheet metal working, welding is the process used to join two or more metal parts. Commonly used welding techniques include TIG welding and laser welding, which ensure that the metal parts are firmly joined together to form a stronger structure.

Finishing: Once the basic shape and structure has been created, sheet metal parts need to be finished. This includes removing thermal strains from welds, smoothing weld seams, removing burns and surface polishing to ensure that the appearance and dimensions of the sheet metal part are exactly as designed.

Assembly: After finishing, sheet metal parts are next assembled into larger components or complete products. This step may involve bolts, nuts and other types of fasteners, as well as small and medium-sized assembly work.

Inspection: Before a sheet metal part leaves the factory, it is subjected to a final dimensional and cosmetic inspection. This step ensures that each product meets the design criteria and is ready to be put to use in a real-world environment.

Sheet metal fabrication at CTT Technology is a complex process that involves a number of delicate steps, each of which needs to be executed with precision to ensure the quality of the final product. From design to inspection, each step is an important safeguard to create high quality sheet metal products. As technology continues to advance, the efficiency and precision of sheet metal processing continues to improve, providing more high-quality, high-performance metal product solutions for a wide range of industries.

Related Information
Custom Medical Precision Component Solutions: Full Process Assurance from Design to Production

We provide customized precision sheet metal components for medical equipment, covering the full process from material selection and process design to quality inspection, ensuring the products meet the specific requirements and regulatory standards of the medical industry.

Core of Precision Sheet Metal Processing: High-Accuracy Equipment

An in-depth analysis of the technical requirements in precision sheet metal processing, covering high-precision equipment configuration, full-process manufacturing control, professional material selection, and strict quality inspection systems to ensure compliance with top-tier industry standards.

Analysis of Differences Between Medical Sheet Metal Fabrication and Conventional Sheet Metal Fabrication

Tailored to the specific requirements of medical device manufacturing, we provide complete medical sheet metal fabrication solutions covering key technical aspects such as biocompatible materials, sterile surface treatment, and full-process traceability.

Preferred Choice for Industrial Manufacturing: A Comparative Guide to the Advantages of Sheet Metal Laser Cutting

This article provides an in-depth analysis of the technical principles of sheet metal laser cutting, including core components such as laser generators and optical path systems. It details its precision advantage of ±0.03mm, high-efficiency processing characteristics, and practical applications in fields like automotive manufacturing, electronic equipment, and medical devices.

Email to this supplier

Name:
Phone:
Email:
Message: